Math EOG Cheat Sheet:

Volume

Sphere-
$$V = \frac{4}{2}\pi r^3$$

Slope Formula:

Cone- $V = \frac{1}{2}\pi r^2 h$

run

Slope-Intercept Form:

y = mx + b

Laws of Exponents

Multiplying Powers of the Same Base:

If you are multiplying powers of the same base, you just add the exponents.

 $(x^{a})(x^{b}) = x^{a+b}$ $(xxx)(xxxxx) = x^{8}$ Or $(x^{3})(x^{5}) = x^{3+5} = x^{8}$

Raising a Power to a Power:Any power of a power: you multiply the exponents. $(x^a)^b = x^{ab}$

$$(x^{2})^{4} = x^{(2)(4)} = x^{8}$$

Or
$$(x^{2})^{4} = (x^{2})(x^{2})(x^{2})(x^{2}) = (xx)(xx)(xx)(xx) = x^{8}$$

Zero Power of Exponent: Anything to the 0 power is 1. $x^0 = 1$

Dividing Powers of the Same Base:

Division with like bases you subtract exponents.

 $\frac{x^{a}}{x^{b}} = x^{a-b}$ For example, $\frac{5^{5}}{5^{3}} = 5^{5-3} = 5^{2} = 25$ $\frac{5 \cdot 5 \cdot 5 \cdot 5 \cdot 5}{5 \cdot 5 \cdot 5} = 5 \cdot 5 = 25$

Negative Exponents:

A negative exponent means to **divide** by that number of factors **instead of multiplying**. So 4^{-3} is the same as $\frac{1}{4^3}$, and $x^{-3} = \frac{1}{x^3}$.

As you know, **you can't divide by zero**. So there's a restriction that $x^{-n} = \frac{1}{x^n}$ only when x is not zero. When x = 0, x⁻ⁿ is undefined.

Cylinder- -
$$V = \pi r^2 h$$

Radicals:

Simplifying Multiplying with Square Roots:

 $(\sqrt{a})(\sqrt{b}) = \sqrt{ab}$ For example: $\sqrt{12}\sqrt{8} = \sqrt{96}$

Simplifying Division with Square Roots:

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

For example:
$$\sqrt{\frac{16}{9}} = \frac{\sqrt{16}}{\sqrt{9}} = \frac{4}{3}$$

Perfect Squares- numbers that when you take the square root, you get a whole number $0^2 = 0$ $1^2 = 1$ $2^2 = 4$ $3^2 = 9$ $4^2 = 16$ $5^2 = 25$ $6^2 = 36$ $7^2 = 49$ $8^2 = 64$ $9^2 = 81$ $10^2 = 100$ $11^2 = 121$ $12^2 = 144$ $13^2 = 169$ $14^2 = 196$ $15^2 = 225$ $20^2 = 400$ $25^2 = 625$ $30^2 = 900$

Perfect Cubes- numbers that when you take the cube root, you get a whole number $1^3 = 1$ $2^3 = 8$ $3^3 = 27$ $4^3 = 64$ $5^3 = 125$ $6^3 = 216$ $10^3 = 1000$

How to Estimating Square Roots:

Instructions here!

Pythagorean Theorem $a^2 + b^2 = c^2$

How to solve for hypotenuse:

$$c = 3 + b^{2} = c^{2}$$

$$4^{2} + 3^{2} = c^{2}$$

$$4^{2} + 3^{2} = c^{2}$$

$$16 + 9 = c^{2}$$

$$25 = c^{2}$$
Find c by taking square
root of both sides

$$c^{2} = 25$$

$$\sqrt{c^{2}} = \sqrt{25}$$

$$c = 5 + quswer$$

How to solve for leg:

Systems of Equations

One Solution- two linear lines that cross only once Infinite Solutions- two lines that are exactly the same No Solution- Two parallel lines (lines never cross)

Elimination:

Substitution:

Directions: Solve the following system of equations using substitution.

-x +y = 1 2x +y = -2

Step 1:	Solve 1 equation for 1 variable: (x =) or (y=)
-x +y = 1 -x <mark>+x</mark> +y = 1 +x y = 1 +x	I chose the first equation because it was the easiest to rewrite.
y = x +1	I added x to each side to rewrite this equation as y = x+1.
Step 2: 2x +y = -2	Substitute this expression into the other equation and solve.
x^{+} 2x + x + 1 = -2 3x + 1 = -2 3x + 1 = -2 3x + 1 = -2 2x - 2	Since I know that $y = x+1$, I substituted x+1 for y into the equation, $2x + y = -2$.
$\frac{3x^{-}}{3} = \frac{3}{3}$ x = -1	Then I solved for x and found x = -1
Step 3:	Now I need to find y. I know that x = -1.
y = x +1 y = -1 +1 y = 0	Substitute -1 for x into $y = x + 1$.
	When I substitute -1 for x, I find y = 0.
Solution: (-1, 0)	My solution is the x and y values written as an ordered pair.
Step 4: Check	Substitute the values into
	each equation and check!
-x +y = 1	2x +y = -2
-(-1) +0 = 1	2(-1) +0 =-2
1=1 (*)	$-2 = -2$ (\Box)

Graphing:

Scatterplots:

Correlation:

Positive Correlation-If the data points make a straight line going from the origin out to high xand y-values, then the variables are said to have a positive correlation. Hours of study vs. Test scores

Negative Correlation-If the line goes from a high-value on the y-axis down to a high-value on the x-axis, the variables have a negative correlation.

No Correlation-If the data is all over the graph with no pattern then the variables have no relationship and thus, no correlation.

Scientific Notation:

"Handy" Helpful Tip 1 Keep in mind at all times the following:			
Normal Numbers bigger than 1, or large numbers, always have a POSITIVE Power of 10.			
6.2 x 10 ^① = 62 1.496 x 10 ^⑧ = 149 600 000			
Values smaller than 1, usually decimal values, always have a NEGATIVE Power of 10.			
$2.31 \times 10^{-3} = 0.00231$ $6.234 \times 10^{-1} = 0.6234$			
Scientific Notation Scientific notation is used to make it easier to work with very large and very small numbers.			
Changing large numbers to Step 1: scientific notation Move the decimal to make a number between 1 and 10.			
Step 2: Count how many places the decimal point moved Step 3: Write the number without all the 0s and multiply	2,40000		
by a power of 10. The exponent tells how many places the decimal point was moved.			
0.000004.8Move the decimal point number between 1 ar4.8 × 10 ⁻⁶ Use a negative power places the decimal way	int to the right to make a nd 10. of 10 to show how many is moved.		
Changing back to Step 1: standard form Since the exponent is positive, make a larger number.	5.3 x 10 ⁷		
Step 2: Move the decimal point to the RIGHT the number of times indicated by the exponent, and then add zeros to fill in the spaces.	5.3000000		
Step 3: Write the number in standard form.	53,000,000		

Convert to Scientific Notation

3,250,000,000.	0.0000004
9 units	7 units
to the LEFT	to the RIGHT
LEFT -> positive exponent 3.25 × 10 ⁹	RIGHT→ negative exponent 4 × 10 ⁻⁷

Functions Linear Functions

Vertical Line Test

Cuts once, so graph represents a function.

Cuts twice, so graph does not represent a function.