## Math EOG Cheat Sheet:

## Volume

Cone- $V=\frac{1}{3} \pi r^{2} h$
Cylinder- $-V=\pi r^{2} h$
Sphere- $V=\frac{4}{3} \pi r^{3}$

Slope Formula:
$\frac{r i s e}{r u n}$

Slope-Intercept Form:

$$
y=m x+b
$$

## Laws of Exponents

## Multiplying Powers of the Same Base:

If you are multiplying powers of the same base, you just add the exponents.

$$
\begin{gathered}
\left(x^{a}\right)\left(x^{b}\right)=x^{a+b} \\
(x x x)(x x x x x)=x^{8}
\end{gathered}
$$

or

$$
\left(x^{3}\right)\left(x^{5}\right)=x^{3+5}=x^{8}
$$

## Raising a Power to a Power:

Any power of a power: you multiply the exponents.

$$
\begin{gathered}
\left(x^{a}\right)^{b}=x^{a b} \\
\left(x^{2}\right)^{4}=x^{(2)(4)}=x^{8} \\
\text { Or } \\
\left(x^{2}\right)^{4}=\left(x^{2}\right)\left(x^{2}\right)\left(x^{2}\right)\left(x^{2}\right)=(x x)(x x)(x x)(x x)=x^{8}
\end{gathered}
$$

## Zero Power of Exponent:

Anything to the 0 power is 1 .

$$
x^{0}=1
$$

## Dividing Powers of the Same Base:

Division with like bases you subtract exponents.

$$
\begin{gathered}
\frac{x^{a}}{x^{b}}=x^{a-b} \\
\text { For example, } \frac{5^{5}}{5^{3}}=5^{5-3}=5^{2}=25 \\
\frac{5 \cdot 5 \cdot 5 \cdot 5 \cdot 5}{5 \cdot 5 \cdot 5}=5 \cdot 5=25
\end{gathered}
$$

## Negative Exponents:

A negative exponent means to divide by that number of factors instead of multiplying. So $4^{-3}$ is the same as $\frac{1}{4^{3}}$, and $x^{-3}=\frac{1}{x^{3}}$.
As you know, you can't divide by zero. So there's a restriction that $\mathrm{x}^{-\mathrm{n}}=\frac{1}{x^{n}}$ only when x is not zero. When $x=0, x^{-n}$ is undefined.

## Radicals:

Simplifying Multiplying with Square Roots:

$$
\begin{gathered}
(\sqrt{a})(\sqrt{b})=\sqrt{a b} \\
\text { For example: } \\
\sqrt{12} \sqrt{8}=\sqrt{96}
\end{gathered}
$$

Simplifying Division with Square Roots:

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

For example:

$$
\sqrt{\frac{16}{9}}=\frac{\sqrt{16}}{\sqrt{9}}=\frac{4}{3}
$$

Perfect Squares- numbers that when you take the square root, you get a whole number

| $0^{2}=0$ | $1^{2}=1$ | $2^{2}=4$ | $3^{2}=9$ | $4^{2}=16$ | $5^{2}=25$ | $6^{2}=36$ | $7^{2}=49$ |
| :--- | :--- | :--- | :---: | :--- | :--- | :--- | :--- |
| $8^{2}=64$ | $9^{2}=81$ | $10^{2}=100$ | $11^{2}=121$ | $12^{2}=144$ | $13^{2}=169$ | $14^{2}=196$ |  |
| $15^{2}=225$ | $20^{2}=400$ | $25^{2}=625$ | $30^{2}=900$ |  |  |  |  |

Perfect Cubes- numbers that when you take the cube root, you get a whole number $1^{3}=1 \quad 2^{3}=8 \quad 3^{3}=27 \quad 4^{3}=64 \quad 5^{3}=125 \quad 6^{3}=216 \quad 10^{3}=1000$

How to Estimating Square Roots:
Instructions here!

## Real Number System:

## Real Number System

RATIONAL: written in form a/b i.e. fractions and repeating decimals.
INTEGER: whole numbers and their additive inverses. $-3,-2,-1,0,1,2,3$
WHOLE: 0.1.2.3
NATURAL (counting):
1,2,3

REAL: Includes all rational and irrational numbers.

IRRATIONAL: nonterminating, nonrepeating numbers, i.e. $\pi=3.14159$

## Pythagorean Theorem

$$
a^{2}+b^{2}=c^{2}
$$



Pythagorean Theorem: $c^{2}=a^{2}+b^{2}$
How to solve for hypotenuse:


$$
\begin{aligned}
& \text { Find } c \text { by taking square } \\
& \text { root of both sides } \\
& c^{2}=25 \\
& \sqrt{c^{2}}=\sqrt{25} \\
& c=5<\text { answer }
\end{aligned}
$$

How to solve for leg:

$$
\left.\begin{array}{l}
8 \\
c=10 \\
a=8 \\
b=x
\end{array}\right\} \begin{array}{r}
10 \\
\text { plug-in } \\
a^{2}+b^{2}=c^{2} \\
8^{2}+x^{2}=10^{2} \\
64+x^{2}=100 \\
-64 \quad-64
\end{array} \leftarrow \text { get } x^{2} \text { isolated }
$$

## Systems of Equations

One Solution- two linear lines that cross only once
Infinite Solutions- two lines that are exactly the same
No Solution- Two parallel lines (lines never cross)

## Elimination:

$$
\begin{aligned}
& \left\{\begin{array}{l}
x+y=2 \\
x-y=14
\end{array}\right\} \\
& \begin{aligned}
x+y & =2 \\
x-y & =14
\end{aligned} \quad \begin{aligned}
\text { eliminate the } \\
y \text { variable by } \\
\text { adding equations }
\end{aligned} \\
& 2 x=16 \leftarrow \text { solve for } x \\
& x=8 \longleftarrow \text { use to find } y \\
& x+y=2 \\
& 8+y=2 \\
& \begin{array}{rl}
-8 \quad-8 \\
y & y=-6
\end{array} \\
& (8,-6) \text { solution } \\
& \left\{\begin{array} { l } 
{ - x + 5 y = 8 } \\
{ 3 x + 7 y = - 2 }
\end{array} \stackrel { \times 3 } { \Rightarrow } \quad \left\{\begin{array}{r}
-3 x+15 y=24 \\
3 x+7 y=-2
\end{array}\right.\right. \\
& -3 x+15 y=24 \\
& +\quad 3 x+7 y=-2 \\
& 22 y=22 \\
& \frac{22 y}{22}=\frac{22}{22} \\
& y=1
\end{aligned}
$$

Substitution:


| Step 1: $\begin{aligned} & -x+y=1 \\ & -x+x+y=1+x \\ & y=1+x \\ & y=x+1 \end{aligned}$ | Solve 1 equation for 1 variable: $(x=\ldots)$ or ( $\mathrm{y}=\ldots$ ) <br> I chose the first equation because it was the easiest to rewrite. <br> I added $x$ to each side to rewrite this equation as $y=x+1$. |
| :---: | :---: |
| Step 2: $\begin{aligned} & 2 x+y=-2 \\ & \quad-x+1=-2 \\ & 2 x+x+1=-2 \\ & 3 x+1=-2-1 \\ & 3 x+1-1=-\frac{3}{3} \end{aligned}$ $x=-1$ | Substitute this expression into the other equation and solve. <br> Since I know that $\mathrm{y}=\mathrm{x}+1$, I substituted $\mathrm{x}+1$ for y into the equation, $2 x+y=-2$. <br> Then I solved for x and found $x=-1$ |
| Step 3: $\begin{aligned} & y=x+1 \\ & y=-1+1 \\ & y=0 \end{aligned}$ | Now I need to find y. I know that $x=-1$. <br> Substitute-1 for x into $y=x+1$. <br> When I substitute - 1 for x , I find $\mathrm{y}=0$. |
| Solution: (-1, 0) | My solution is the $x$ and $y$ values written as an ordered pair. |
| Step 4: Check $\begin{aligned} & -x+y=1 \\ & -(-1)+0=1 \end{aligned}$ $1=1 \odot$ | Substitute the values into each equation and check! $\begin{aligned} & 2 x+y=-2 \\ & 2(-1)+0=-2 \\ & -2=-2 \div \end{aligned}$ |

## Graphing:



## Scatterplots:

## Line of best Fit:



## Correlation:

Positive Correlation-If the data points make a straight line going from the origin out to high xand $y$-values, then the variables are said to have a positive correlation.
Hours of study vs. Test scores


Negative Correlation-lf the line goes from a high-value on the $y$-axis down to a high-value on the $x$-axis, the variables have a negative correlation.


No Correlation-If the data is all over the graph with no pattern then the variables have no relationship and thus, no correlation.


Scientific Notation:

## "Handy" Helpful Tip 1

Keep in mind at all times the following:
Normal Numbers bigger than 1, or large numbers, always have a POSITIVE Power of 10.
$6.2 \times 10^{11}=62$
$1.496 \times 10^{8}=149600000$
Values smaller than 1, usually decimal values, always have a NEGATIVE Power of 10.
$2.31 \times 10^{-3}=0.00231$
$6.234 \times 10^{-1}=0.6234$

## Scientific Notation

Scientific notation is used to make it easier to work with very large and very small numbers.
Changing large numbers to
Step 1: scientific notation
Move the decimal to make a number between 1 and 10 .

## Step 2:

Count how many places the decimal point moved

## Step 3:

Write the number without all the Os and multiply bya power of 10 . The exponent tells how many places the decimal point was moved.

$4.8 \times 10^{-6}$
Use a negative power of to to show how many
places the decimat was moved
places the decimal was moved.

## Step 1:

Changing back to

Since the exponent is positive, make a larger number.

## Step 2:

Move the decimal point to the RIGHT the number of times indicated by the esponent, and then add zeros to fill in the spaces.

## Step 3:

$5.3 \times 10^{7}$
5.3000000

53,000,000

Write the number in standard form.

## Convert to Scientific Notation

0.0000004.

7 units
to the RIGHT

LEFT $\rightarrow \begin{gathered}\text { positive } \\ \text { exponent }\end{gathered}$ RIGHT $\rightarrow \begin{aligned} & \text { negative } \\ & \text { exponent }\end{aligned}$
$3.25 \times 10^{9} \quad 4 \times 10^{-7}$
3.2
$4 \times 10^{-7}$

9 units
to the LEFT

```
3.250,000000
```

3.250,000000
9 units

```

Multiply the following numbers. \(\left(2 \times 10^{4}\right)\left(3 \times 10^{3}\right)\)
1. Multiply the coefficients. \(2 \times 3=6\)
2. The base 10 remains. DO NOT CHANGE!
3. Add your exponents. \(4+3=7\)

The answer is \(6 \times 10^{7}\)

\section*{ALgebra EETT Grant}

Multiplication
\(\left(2.5 \times 10^{17}\right) \times\left(5.0 \times 10^{14}\right)\)

\(2.5 \times 5.0=12.5\) \(17+14=31\)
\(12.5 \times 10^{31}=1.25 \times 10^{32}\)

\section*{Division}
\(\frac{2.5 \times 10^{17}}{5.0 \times 10^{14}}\)
Just divide these two

\(2.5 / 5.0=0.5\)
\(17-14=3\)
\(0.5 \times 10^{3}=5.0 \times 10^{2}\)

Functions
Linear Functions
Relation \#1

\section*{Relation \#2}
is not a function
\(\{(1, b),(5, \mathrm{a}),(5, \mathrm{c})\}\)

The same \(x\) value (5) has
2 different \(Y\) values!


Vertical Line Test


Cuts once, so graph represents a function.


Cuts twice, so graph does not represent a function.```

